
e

0

e

0

e

e

e

A Semi-Annual Progress Repor t
NASA Award No. NAG-1-605
July 1, 1985 - June 30, 1987 63 73y

DETECTION OF FAULTS AND SOFTWARE
RE L I AB I L I TY ANALYSIS

Submitted to:

National Aeronautics and Space Admin is t ra t ion
L a n g l e y Research Center
Hampton, V i rg in ia 23665

At ten t ion : Mr. Gerard E. Migneault
ISD M/S 130

Submitted by :

John C. K n i g h t
Associate Professor

887-2 7 I 9 8
(IASA-CR-180346) DETECfICN CE FAULTS A N D
SCPT PAilE RELX ABILXTY A EdLYSlS Seaiannual
Exogress BeFoxt (V i r g i n i a Gciv.) 82 p
Avai l : EZIS HC ACS/l¶F A 0 1 CSCL IUD Unclas

6.3138 0063724 -
Repor t No. U VA/528243/CS87/102 I Februa ry 1987

SCHOOL OF ENGINEERING AND

APPLIED SCIENCE

I
I

I DEPARTMENT OF COMPUTER SCIENCE .

UNIVERSITY OF VIRGINIA

CHARLOTTESVILLE, VIRGINIA 22901

0

a

0

e

A Semi-Annual Progress Repor t
NASA Award No. NAG-1-605
July 1, 1985 - June 30, 1987

DETECTION OF FAULTS AND SOFTWARE
RELl AB I L I T Y ANALYSIS

Submitted t o :

National Aeronautics and Space Admin is t ra t ion
Langley Research Center
Hampton, V i rg in ia 23665

At tent ion: M r . Gerald E. Migneault
ISD M/S 130

Submitted by:

John C. K n i g h t
Associate Professor

Department o f Computer Science

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

UNIVERSITY OF VIRGINIA

CHARLOTTESVILLE, V IRGINIA

Repor t No. UVA/528243/CS87/102

Februa ry 1987

Copy No. G!

SECTION I

INTRODUCTION

The work being carried out under this grant is an investigation of software faults. The goal

is to better understand their characteristics and to apply this understanding to the software

development process for crucial applications in an effort to improve software reliability. Some of

the work is empirical and some analytic. The empirical work is based on the results of the Knight

and Leveson experiment [13 on N-version programming. The analytic work is attempting to build

useful models of certain aspects of the software development process.

Multi-version or N-version programming [2] has been proposed as a method of providing

fault tolerance in software. The approach requires the separate, independent preparation of

multiple (i.e. “ W ’) versions of a piece of software for some application. These versions are

executed in parallel in the application environment; each receives identical inputs and each

produces its version of the required outputs. The outputs are collected by a voter and, in

principle, they should all be the same. In practice there may be some disagreement. If this

occurs, the results of the majority (assuming there is one) are taken to be the correct output, and

this is the output used by the system.

a

The major experiment carried out by Knight and Leveson was designed to study N-version

programming and initially investigated the assumption of independence. In the experiment,

students in graduate and senior level classes in computer science at the University of Virginia

(UVA) and the University of California at Irvine (UCI), were asked to write programs from a

single requirements specification. The result was a total of twenty-seven programs (nine from

UVA and eighteen from UCI) al l of which should produce the same output from the same input.

Each of these programs was then subjected to one million randomly-generated test cases. The

-1 -

iC,

e

Knight and Leveson experiment has yielded a number of programs containing faults that are

useful for general studies of software reliability as well as studies of N-version programming.

Our work during the grant reporting period has been mainly in two areas and each area is

covered in detail in an appendix of this report. The specific topics are fault tolerance through data

diversity which is discussed in appendix A, and analytic models of comparison testing which are

discussed in appendix B.

- 2 -

a

REFERENCES

(1) J.C. Knight and N.G. Leveson, “An Experimental Evaluation Of The Assumption Of

Independence In Multi-Version Programming,’ ’, IEEE Trans. on Software Engineering,

Vol. SE-12, NO. 1, January 1986.

(2) L. Chen and A. Avizienis, “N-Version Programming: A Fault-Tolerance Approach To

Reliability Of Software Operation”, Digest of Papers FTCS-8: Eighth Annual

International Conference on Fault Tolerant Computing, Toulouse, France, pp. 3-9, June

1978.

e

- 3 -

ei

APPENDIX A

DATA DIVERSITY: AN APPROACH TO

SOFTWARE FAULT TOLERANCE

*
Paul E. Ammann John C. Knight

Department of Computer Science
University of Virginia

Charlottesville, Virginia, 22903

*

0

e

DATA DIVERSITY: AN APPROACH TO

SOFTWARE FAULT TOLERANCE?

Paul E. Ammann John C. Knight$

Department of Computer Science
University of Virginia

Charlottesville, Virginia, 22903

ABSTRACT

Crucial computer applications such as avionics systems and automated life support systems
require extremely reliable software. For a typical system, current proof techniques and testing
methods cannot guarantee the absence of software faults, but careful use of redundancy may
allow the system to tolerate them. The two primary techniques for building fault-tolerant
software are N-version programming and recovery blocks. Both methods rely on redundant
software written to the same specifications to provide fault tolerance at execution time. These
techniques use design diversity to tolerate residual faults.

Nothing fundamental limits diversity to design; diversity in the data space may also provide
fault tolerance. Two observations promote this view. First, program faults often cause failure
only under certain special case conditions. Second, for some applications a program may express
its input and internal state in a large number of logically equivalent ways. These observations
suggest obtaining a related set of points in the data space, executing the same software on these
points, and then employing a decision algorithm to determine system output. In direct analogy to
the N-version and recovery block strategies, the decision algorithm uses a voter or an acceptance
test. This technique uses dura diversity to tolerate residual faults.

Subject Index:
Fault-tolerant-software, software reliability, design diversity, data diversity.

Word Count:
Approximate word count, with figures converted to word equivalents: 4800.

'Sponsored in part by NASA grant NAGlaOS; paper cleared by affiliation.
'Presenter at FTcs17 if accepted.

1. INTRODUCTION

*

e

e

Researchers have proposed various methods for building fault-tolerant software in an effort

to provide substantial improvements in the reliability of software for crucial applications. At

execution time the fault-tolerant structure attempts to cope with the effect of those faults that

survive the development process. The two best-known methods of building fault-tolerant

software are N-version programming [AVI 781 and recovery blocks [RAN 751. To tolerate faults,

both of these techniques rely on design diversity, the availability of multiple implementations of a

specification. Software engineers a s m e that the different implementations contain different

designs and thereby, it is hoped, different faults. Since diversity in the design space may provide

fault tolerance, diversity in the data space might also. This paper considers datu diversity, a fault

tolerant strategy that complements design diversity.

N-version programming requires the separate, independent preparation of multiple (Le.

“N”) versions of a program for some application. These versions execute in parallel in the

application environment; each receives identical inputs, and each produces its version of the

required outputs. A voter collects the outputs, which should, in principle, all be the same. If the

outputs disagree, the system uses the results of the majority, provided there is one.

The recovery block structure submits the results of an algorithm to an acceptance test. If

the results fail the test, the system restores the state of the machine that existed just prior to

execution of the algorithm and executes an alternate algorithm. The system repeats this process

until it exhausts theset of alternates or produces a satisfactory output.

It is well known that software often fails for special cases in the data space.’ In practice, a

program may survive extensive testing, work for many cases, and then fail on a special case. The

+For example, see [nrr 811. pp. 347-348.

e -A2-

m

*

special case may take the form of what seems to be an obscure set of values in the data. Testing

frequently fails to reveal faults associated with special cases precisely because the test harness

does not generate the exact circumstances required. A test data set whose values are merely close

to the values which cause the program to fail does not uncover the fault.

These observations suggest that if software fails under a particular set of execution

conditions, a minor perturbation of those execution conditions might allow the software to work.

Other researchers have exploited this property in specific instances. Gray observed that certain

faults that caused failure in an asynchronous commercial system did not always cause failure if

the same inputs were submitted to a second execution [GRA 851. The system succeeded on the

second execution due to a chance reordering of the asynchronous events. Gray introduced the

term ‘ ‘Heisenbugs’ ’ to describe these faults and their apparent non-deterministic manifestations.

Shepherd, Martin, and Moms have proposed “temporal separation” of the input data to a

dual version system [MAR 82, MOR 811. The versions use data from adjacent real-time frames

rather than the same frame. Since the versions read data at different times, the data differ. The

system corrects for this discrepancy so that it can vote on the outputs of the versions. It is hoped

that the use of time-skewed data will prevent the versions from failing simultaneously.

Each of these approaches attempts to avoid faults by operating software with altered

execution conditions. Each approach relies upon circumstance to change the conditions.

However, execution conditions can be changed deliberately. For example, concurrent systems

need not rely on a chance reordering of events. If reordering events might allow a second

execution to succeed, then the system should enforce a reordering. Changing the processor

dispatching algorithm after state restoration forces a different execution sequence. Similarly,

skewing the inputs to the versions in a N-version system does not require the passage of time.

Inputs can be manipulated algorithmically. Many real-valued quantities have tolerances set by

- A 3 -

their specifications, and all values within those tolerances are logically equivalent.

0

a

*

0

Data diversity is an orthogonal approach to design diversity and a generalization of the

work cited above. A diverse-data system produces a set of related data points and executes the

same software on each point. A decision algorithm then determines system output. As in the N-

version and recovery block strategies, the decision algorithm uses a voter or an acceptance test.

Data re-expression is the generation of logically-equivalent data sets. A data re-expression

algorithm consults the specifications, and possibly a random number generator, to reassign values

to variables. A simple data re-expression algorithm for a real variable might alter its value by a

small percentage. Clearly, not all applications can employ data diversity. However, real-time

control systems often can. Sensors are noisy and inaccurate, and small modifications of sensor

values for fault-tolerant purposes may still allow the software to generate acceptable outputs.

Data re-expression extends beyond perturbing real-valued quantities within specified

bounds. Any mapping of a program’s data that preserves the information content of those data is

a valid re-expression algorithm. For instance, suppose that a program processes Cartesian input

points and that only the points’ relative positions are of interest. A valid re-expression algorithm

could translate the coordinate system to a new origin or rotate the coordinate system about an

arbitrary point.

This paper describes data diversity as an approach to fault-tolerant software and presents the

results of a pilot study. Section 2 discusses the regions of the input space that cause failure for

certain experimental programs. Section 3 describes program structures designed to implement

data diversity, and section 4 derives a simple, analytic model for a one of these program

structures, the retry block. Results of the pilot experiment using a retry block appear in section 5,

and section 6 presents conclusions.

-A4-
e

2. FAULT REGIONS

*

e

0

The input data for most programs comes from hyperspaces of very high dimension. For

example, a program may read and process a set of twenty floating-point numbers, and so its input

space has twenty dimensions. In many cases the number of dimensions in the space varies

dynamically because the amount of data that a program processes varies for different executions.

The region(s) of the input space that cause program failure are an important characteristic of

the program. The volume, shape, and distribution of such regions, which we callfailure regions,

determine both the program’s failure probability and the effectiveness of data diversity. The fault

tolerance of a system employing data diversity depends upon the ability of the re-expression

algorithm to produce data points that lie outside of a failure region, given an initial data point that

lies within a failure region. The program executes correctly on re-expressed data points only if

they lie outside a failure region. If the failure region has a small cross section in some

dimensions, then re-expression should have a high probability of translating the data point out of

the failure region.

Knowledge of the geometry of failure regions gives insight into the possible performance of

data diversity. We have obtained two-dimensional cross sections of several failure regions for

faults in programs used in a previous experiment [KNI.LEV 861. These cross sections were

obtained by varying two inputs across a uniform grid while all other inputs remain fixed. Figure

1 shows cross sections from two separate faults. t The solid lines show where the correct output

of the program changes, and the small dots show grid points where the faulty program produced

the wrong output.

~~~ 

+The specific faults are 6.2 and 6.3 [BRI.KNI.LEV 861. 

-AS- 



0 

0 

Figure 1: Two Dimensional Cross Sections of Two Failure Regions. 

The ( x ,  y ) coordinates of a set of points in an imaginary radar track form the input space. 

Since each ( x , y )  pair supplies two dimensions, the input space has twice as many dimensions as 

radar points. The radar points are distributed so that the x and y coordinates each span the real 

range -40..40 t , and all radar points for the original experiment were rounded to the nearest 0.1. 

The space from which cross section (a) was taken has 30 dimensions corresponding to 15 

radar points. Cross section (a) was obtained by varying coordinates x1 and x g  with a grid point 

separation of 0.2. The space from which cross section (b) was taken has 18 dimensions 

'The distribution is not uniform. and is defined in [NAG.SKR 821. 



0 

m 

a 

corresponding to 9 radar points. cross section (b) was obtained by varying coordinates x6 and Y6 

with a grid point separation of 0.000001. For both, all other inputs were held fixed. The area of 

cross section (a) is 4 ~ 1 0 ’ ~  times larger than the area of cross section (b). 

The cross sections shown are typical for these programs. This small sample illustrates two 

important points. First, at the resolution used in scanning, these failure regions are solid rather 

than diffuse; for no points interior to the region’s boundary will the program execute correctly. 

Second, since failure regions vary greatly in size, exiting failure regions varies greatly in 

difficulty. 

3. PROGRAM STRUCTURES 

0 

e 

A retry block is a modification of the recovery block structure that uses data diversity 

instead of design diversity. Figure 2 shows the semantics of a retry block. Rather than the 

multiple alternate algorithms used in a recovery block, a retry block uses only one algorithm. A 

retry block’s acceptance test has the same form and purpose as a recovery block’s acceptance test. 

A retry block executes the single algorithm normally and evaluates the acceptance test. If the 

acceptance test passes, the retry block is complete. If the acceptance test fails, the algorithm 

executes again after the data has been re-expressed. The system repeats this process until it 

violates a deadline or produces a satisfactory output. 

An N-copy system is a modification of an N-version system that uses data diversity instead 

of design diversity. Figure 3 shows the semantics of an N-copy system. N copies of a program 

execute in parallel; each on a slightly modified set of data. An N-copy system votes on results in 

an analogous manner to an N-version system. Reconciling disagreement as copies traverse output 

Space boundaries and preventing divergence as copies follow different execution paths 

-A7- 



0 

Obtain 
NewData - 

e 

Execute 
Algorithm 

Use Invoke 

0 

output Backup 

Figure 2: Retry Block. 

System 
Input 

complicate voting in an N-copy system. The dashed line in figure 3 labeled “Synchronization 

System - output Re-Express Voter Data 

Information” symbolizes this difficulty. 

Figure 3: N-Copy Programming. 

- A S -  



i 

a 

Both retry blocks and N-copy systems are substantially less expensive to develop than their 

diverse-design counterparts. Many hybrid structures incorporating both design and data diversity 

are possible. The remainder of the paper concentrates exclusively on retry blocks and does not 

consider hybrid structures or N-copy systems further. 

4. SIMPLE ANALYTIC MODEL FOR A RETRY BLOCK 

c 

0 

e 

0 

Figure 4 shows the model we have used to predict the success of a retry block assuming a 

perfect acceptance test. On a single execution under operational conditions, the program used in 

the construction of the retry block has a probability of failure, p.  The random variable Q gives 

the probability that a re-expressed data point causes failure given that the initial point caused 

failure. Q is a random variable because its value depends upon the geometry of the failure region 

original 
Data 

Initial 
Execution 

Success 

Failure 

success 

Failure 

First 
Retry 

Success 

Success 

Failure 

Second I Third 
Failure 

% 
Retry Retry 

I 

Figure 4: Retry Block Model Assuming A Perfect Acceptance Test. 

- A 9 -  



0 

e 

in which the original data point lies, the location of the data point within that region, and the 

algorithm used to re-express the data. Since Q is a probability, it assumes values in the range 

0..1. We denote the distribution function for Q as FQ(q) where FQ(q)=prob(QSq).  The 

t d corresponding density function for Q is f Q (4) where f Q (4) = -FQ (4). 
dq 

The probability that the retry block fails when using n retries, denoted probCfail), is 

prob Vuil) =pen .  The probability that a retry block will succeed in n or fewer retries is one 

minus this probability. prob(fail) is a random variable since it is a function of Q . Its expected 

value is: 

Since the integral in the expression for E [prob(faif)] is multiplied by p, the failure probability of 

the program, the integral describes how the performance of a retry block improves upon the 

1 

performance of a program. Thus the quantity Jqn f (q)dq is the average factor by which the use 
0 

a 

of a retry block reduces the probability of system failure. 

5. EMPIRICAL RESULTS FOR A RETRY BLOCK 

We have obtained empirical evidence of the expected performance of data diversity on 

some of the known faults in the Launch Interceptor Programs produced for the Knight and 

Leveson experiment [KNI.LEV 851. As noted in Section 2, one of the inputs to the programs is a 

list of ( x , y )  pairs representing radar tracks. To employ data diversity in this application, we 

assume that data obtained from the radar is of limited precision. The data re-expression 

~~~~ 

+We assume that Q is continuously distributed The extension to to discretely distributed Q is straightforward.

-A10 -

a

Figure 5: Re-Expression Of Three Radar Points.

algorithm that we used moved each (x , y) point to a random location on the circumference of a

circle centered at (x , y) and of some small, fixed radius. Figure 5 shows how this algorithm re-

expresses a set of three radar points. Many other valid re-expression algorithms are possible.

The experiment measured the performance of data diversity in the form of the retry block

e

0

0

e

on the Launch Interceptor Programs, and how this performance was affected by two parameters.

The first parameter studied was the radius of displacement used in the data re-expression

algorithm. The second parameter was the effect of the re-expression algorithm on different faults.

t Figures 6 and 7 show the effects of these two parameters on estimated F, (q) functions.

Each distribution function in these figures corresponds to a particular displacement value and

fault. A given point, (4, Fe(q)) , is the observed probability Fe (4) that a program executing on a

re-expressed data point will have at most a probability of failure, q . Distribution functions that

rise rapidly imply better performance for data diversity since they indicate a higher probability

that re-expression will arrive at a point outside the failure region. For example, a function

'AS with parameten in many other performance models, FQ (4) cannot be determined analytically. The funaions shown are
empirical estimates ofFe (4) .

- A l l -

a

a

0

e

e

1 -

0
0 1

Figure 6: Fault 9.1 Sample F Q (q) For Three Displacement Values.

containing the point (0.05.0.95) means that the probability is 0.95 that the re-expressed data point

will cause failure with a probability of 0.05 or less.

Figure 6 shows the observed F Q (q) of a single fault for three values for the radius of

displacement. From left to right on the graph, the displacement values are 0.1, 0.01, and 0.001.

As would be expected, larger displacement values in the data re-expression algorithm have the

effect of making the re-expressed data point less likely to cause failure. These displacements are

relatively small compared the the range of values that the radar points could assume.

Figure 7 shows the observed F Q (q) for three different faults t using a fixed displacement of

0.01 in the re-expression algorithm. These three faults were chosen to show the wide variation

from fault to fault on the distribution of the probability that a re-expressed data point will cause

failure. The leftmost function rises rapidly, which indicates that data diversity will tolerate the

0

'FIOIII left to right on the graph, the faults arc 8.1.7.1, and 6.2. [BRI.KNI.LEV 861.

- A12 -

a

0 -

1 a
0 1

Figure 7: Sample F , (q) For Three Different Faults At 0.01 Displacement. e

associated fault well at the given displacement value. The rightmost function rises slowly, which

indicates that data diversity requires a better re-expression algorithm to tolerate the associated

fault.

0

0

The table in figure 8 shows the performance obtained using retry blocks for various faults

under various conditions. Each table entry is an expected value multiplier for the probability of

system failure. The table shows results for retry blocks with 1, 2, or 3 retries and displacement

values of 0.1, 0.01, or 0.001. An entry in figure 8 means that the failure probability associated

with a given fault is reduced by the factor shown. For instance, the value of 0.43 found in the

middle of the table means that the failure probability associated with fault 7.1 was reduced by a

factor of 0.43 when the displacement in the re-expression algorithm was 0.01 and the number of

retries was 2. Similarly, a table entry of 0.00 means that the effects of the associated fault were

eliminated and an entry of 1.00 means that data diversity had no effect. These values were

obtained from sample distributions such as those illustrated in figures 6 and 7. The model

0
- A13 -

a

0

0

Retries 1

e

Displacement

Fault
6.1
6.2
6.3
7.1
8.1
8.2
9.1

0.001 0.01

0.00 0.00
1.00 0.98
0.00 0.00
0.92 0.59
0.00 0.00
0.00 0.00
0.99 0.90

I

2

0.00
0.87
0.00
0.26
0.00
0.00
0.39

0.00
1 .00
0.00
0.87
0.00
0.00
0.97

0.00
0.96
0.00
0.43
0.00
0.00
0.83

0.00
0.81
0.00
0.11
0.00
0.00
0.19

0.001

0.00
0.99
0.00
0.80
0.00
0.00
0.97

0.00
0.94
0.00
0.29
0.00
0.00
0.74

0.00
0.75
0.00
0.03
0.00
0.00
0.07

Figure 8: Expected Value Multipliers For the Probability of System Failure.

outlined in section 4 was used to calculate the values shown. The integral corresponding to the

multiplier was approximated by summing data obtained from a set of points known to be located

in the failure region for the particular fault. For each point in the set, a value for Q was estimated

from 50 applications of the re-expression algorithm.

Figure 9 displays graphically the non-zero entries from figure 8. For these cases, the extent

to which a retry block reduces the failure probability of a given fault' depends upon the specific

fault, the number of retries, and the displacement value used in the re-expression algorithm.

6. CONCLUSIONS

We have described the general concept of data diversity as a technique for software fault

tolerance and defined the retry block and N-copy programming as two possible approaches to its

- A14 -

a

a

0

a

0 I 1 2

Fault 6.2 Fault 7.1 Fault 9.1

Figure 9: Non-Zero Values From Figure 8.

1
3 1 2 3 1 2 3

implementation. We have presented the results of a pilot study of data diversity in the form of

the retry block. Although the overall performance of rhe retry block varied greatly, we obsewed

a large reduction in failure probability for some of the faults examined in the study. In several

cases the retry block completely eliminated the effects of a fault.

The success of data diversity depends, in part, upon developing a data re-expression

algorithm that is acceptable to the application yet has a high probability of generating data points

outside of a program’s failure region. Many applications could use simple re-expression

algorithms similar to the one employed in t h i s study. For example, sensors typically provide data

with relatively little precision and small modifications to those data will not affect the

application.

Implementing a retry block requires a suitable acceptance test. This is a well-known

problem for the recovery block; any techniques developed for the recovery block apply directly to

the retry block.

0
- A15 -

e

le

).

Compared with design diversity, data diversity is relatively easy and inexpensive to

implement. Data diversity requires only a single implementation of a specification, although

additional costs are incurred in the data re-expression algorithm and the decision procedure.

Data diversity is orthogonal to design diversity. The strategies are not mutually exclusive

and various combinations are possible. For example, an N-version system in which each version

was an N-copy system could be built for very little additional cost over an N-version system. The

way in which data diversity should be used and how it should be integrated with design diversity

is an open question.

lo
7. ACKNOWLEDGEMENTS

It is a pleasure to acknowledge Earl Migneault for thoughts about the failure regions and

data diversity as a general concept. Sue Brilliant’s work in identifying the program faults and

matching those faults with failure cases made it possible to carry out the empirical parts of this

research. We are also pleased to acknowledge Larry Yount for a discussion about time-skewed

inputs. This work was sponsored in part by NASA grant NAG1-605.

0

0
- A16 -

REFERENCES

0

0

a

[AVI 781
A. Avizienis “Fault-Tolerance: The Survival Attribute of Digital Systems”, Proceedings
of the IEEE, Vol. 66, No. 10, October 1978, pp. 1109-1 124.

[BFU 851
S.S . Brilliant, “Analysis of Faults in a Multi-Version Software Experiment”, MS Thesis,
University of Virginia, May, 1985.

[BRI.KNI.LEV 861
S.S . Brilliant, J.C. Knight, N.G. Leveson, “Analysis of Faults in an N-Version Software
Experiment”, University of Virginia Technical Report No. TR-86-20, September, 1986.

[GRA 851
J. Gray, “Why do Computers Stop and What Can Be Done About It?”, Tandem Technical
Report 85.7, June 1985.

[KNI.LEV 861
J.C. Knight, and N.G. Leveson, “A Large Scale Experiment in N-Version Programming”
IEEE Transactions on Soware Engineering, Vol. SE-12, No. 1, January 1986.

[MAR 821
D.J. Martin, “Dissimilar Software in High Integrity Applications In Flight Control”, 1982
AGARD Conference Proceedings #330, Software for Avionics, pp. 36-1 to 36-13.

e

a

e

a

[NAGSKR 821
“Software Reliability: Repetitive Run Experimentation and Modeling”. NASA Report
CR-165836, Langley Research Center, February, 1982.

[MOR 811
M.A. Moms, “An Approach to the Design of Fault Tolerant Software”, MSc Thesis,
Cranfield Institute of Technology, September, 198 1.

[RAN 751
B. Randell, “System Structure for Software Fault Tolerance”, IEEE Transactions on
Software Engineering, Vol. SE-1, No. 2, June 1975.

[TUT 811
“Tutorial: Software Testing and Validation Techniques”, 2nd Ed., IEEE Computer
Society Press, 1981.

- A17 -

0

a

0

e

APPENDIX B

TESTING SOFTWARE

USING MULTIPLE VERSIONS

Susan S. Brilliant John C. Knight

0

a

8

e

Department of Computer Science
University of Virginia

Charlottesville, Virginia, 22903

a

TESTING SOFTWARE USING MULTIPLE VERSIONS

A Preliminary Report

Susan S. Brilliant

John C. Knight

e

e

Financial Acknowledgement

This work was supported in part by NASA under grant number NAG-1-605.

- B 1 -

0

0

ABSTRACT

e

0

e

0

One aspect of the testing process that has been the object of little research is the problem of

determining the correct software response for each test input. For many software systems the

determination of correct outputs is a difficult and time-consuming task.

Some researchers have suggested that multiple independently developed versions can be used to

obviate the need for the a priori determination of the correct output. The outputs of the versions can be

compared, and any differences can be investigated. We call this method comparison resting.

Comparison testing is an appealing approach, because the testing process can be automated easily if

there is no need for the independent calculation of outputs. However, the possibility exists that all of the

versions could obtain identical incorrect outputs. Some test cases that produce failures, then, will not be

investigated.

0
The purpose of this research is to evaluate comparison testing. Parameterized analytic models have

been developed that reveal the effects of fault interrelationships on the ability of comparison testing to

0

0

reveal a fault. A model of the expected performance of operational single- and multiple-version systems

that have been comparison tested is under development, and the effect of the number of versions in a

comparison testing system on expected system performance is being studied. Empirical evidence from a

multi-version experiment is being analyzed as an example of the parameter values that can be expected to

occur.

- B 2 -
0

-' - \

TABLE OF CONTENTS

a

a

a

a

a

0

Abstract ..
Table of Contents ...

1 . Introduction ...
1.1. The Need for More Reliable Software ..
1.2. The Operational Use of Multiple Versions ...
1.3. The Use of Multiple Versions in Testing ..
1.4. Organization of Remainder of Report ...

2 . Previous Research in Dynamic Testing ..
2.1. Testing Strategies ..
2.2. Test Data Selection ...
2.3. Interpretation of Results ..

3 . Notation Used to Describe Fault Interrelationships ..
3.1. Fault Interrelationships that Affect Comparison Testing ...
3.2. Notation ...

4 . Markov Models of Fault Observation Times ..
4.1. A Single Fault Interaction ...
4.2. Multiple Fault Overlaps in a Two-Version System ..

5 . An Analysis of Model Implications ..
5.1. A Basis for Evaluation: The Ideal Test Bed ..
5.2. Performance of Comparison Testing : ..

6 . Worst Case Analysis ...

6.2. Extended Definition of Overlap Ratio ..
6.1. Worst Case Performance with Single Fault Overlap ..

7 . Dispersions of Observation Time Distributions ...
7.1. Variances ...
7.2. Confidence Interval Bounds ..

8 . Conclusions ...

1
ii

11
11
16
18

21
21
23

26
26
29

35
35
37

40
40
44

46
46
47

52

a

0
. B3 .

CHAPTER 1

INTRODUCTION

The purpose of this research is to evaluate a testing method that we call comparison testing, which

requires the availability of multiple versions of the software to be tested. This testing method has been

proposed by other researchers, but its power in revealing the faults in the software to which it is applied

has never been evaluated.

1.1. The Need for More Reliable Software

The need for better testing methods grows with the need for reliable software. Computers are now

being used to control air traffic, trains, aircraft, manned spacecraft, nuclear power plants, defense systems,

and life support systems. In addition to these application areas in which human lives may depend on the

reliability of software, there are also a number of application areas in which failure would incur a heavy

economic penalty. Communications systems, factory process control, and electronic fund transfers are

just a few examples of these application areas [l].

Some applications that are currently being developed require software of extremely high reliability.

For example, engineers at the Sperry Corporation in Phoenix are in the process of developing a fly-by-

wire system to replace the system of hydraulics and pneumatics currently used to control commercial

aircraft [34]. Since the only advantage of the new system is an increase in fuel efficiency, it must be as

reliable as existing systems, which have experienced a failure rate of only lo-'' failures per hour of flight

time. Such reliability rates appear to be beyond the ability of standard software techniques to ensure, or

even to measure with a reasonable amount of testing.

-B4-

1.2. The Operational Use of Multiple Versions

Version 1 Version 2

e

e

0

0

0

e

The generation of two or more functionally-equivalent programs, called versions, from h e same

requirements specification, was originally proposed as a method of achieving higher operational software

reliability [4]. N-version programming, as this approach is called, requires that N versions of critical

software be developed by N individuals or groups that do not interact during the development process.

These independently developed versions are combined into an N-version unit that can be designed to

achieve either error detection or fault tolerance.

An error detection approach is appropriate for situations in which system failure has dire

Yes

1 output 1
Agree? 0 No

1
Engage r- Backup

e

e

Figure 1.1. Multi-Version Programming to Achieve Error Detection

e

0

consequences only if it is undetected; in general a backup system is available in the case of primary

system failure [23,30,34]. Two versions are normally used for fault detection. They are configured as

shown in Figure 1.1. If the versions agree then their output is used; otherwise control is transferred to the

backup system.

N -version programming can also be used to achieve fault tolerance. In most systems, emergency

procedures to deal with detected error states, if they exist, are limited to bringing the system into a safe

state pending external intervention [l]. It would be preferable if a program were able to continue to

function normally despite the presence of faults. Systems with this attribute are said to befault tolerant.

To achieve fault tolerance, an N-version system is configured as shown in Figure 1.2. For these

applications N is generally an odd number greater than or equal to three, and the result achieved by a

majority of the versions (if there is one) is used as the system output.

0

e

Version 1 Version 2 ... Version N

I 1

0 output

e

Figure 1.2. Multi-Version Programming to Achieve Fault Tolerance

a

1.3. The Use of Multiple Versions in Testing
e

0

0

0

a

0

A question that has not been addressed sufficiently in research on testing is that of how the correct

response of a software system or subsystem to each test input can be determined, so that failures can be

recognized during the testing process. The existence of an “oracle” is often explicitly or implicitly

assumed. Yet as a practical matter it is often extremely difficult, if not impossible, to determine the

correct outputs for each input.

Several researchers have suggested that the independent development of multiple versions may be

useful in the testing process. Ramamoorthy et al[27] describe a methodology for the development and

validation of reliable process control software in which two versions of the software are developed. They

have applied their methodology to the production of pilot sofiware for nuclear power plant safety

protection. The authors state that the use of dual development eliminates the need for determining the

correct system responses a priori, since the results from the two programs can be compared with each

other. Similarly, Gmeiner and Voges [141, in their discussion of software diversity in reactor protection

systems, present the idea that “diverse” programming, as they call the multi-version approach, makes it

unnecessary to compute test outputs manually. Yount, Liebel, and Hill report that the two versions of the

SP-300 automatic landing system served as ideal “monitors” for each other during the testing process

WI.

We will call the approach described by these researchers comparison testing. The approach requires

the independent development of two or more versions of the program to be tested. In testing the software,

each test input is submitted to all of the versions. The outputs of the versions are compared, and any

differences among the outputs are investigated to locate the fault or faults responsible for the discrepancy.

The advantages of such a testing method are obvious. Since there is no need for human

examination of the test outputs, the testing process can be automated. Test cases generated randomly or

by any other automated method can be executed with no need for human intervention except when a

-B7-

e

disagreement among versions indicates the presence of a fault.

0

8

0

0

When multiple versions have already been devclopcd to be used in an operational N-version unit, i t

is tempting to test the versions using comparison testing. It may be possible to test the programs much

more extensively in this way than would be possible if all test outputs had to be computed manually.

Even when multiple versions must be developed for the purpose of comparison testing, the increase in

human resources necessary to generate the versions is likely to be more than offset by the reduction in

resources needed for the testing process.

The major difficulty with comparison testing is that there may be faults in the individual versions

that cause the versions to obtain identical incorrect outputs on some inputs. Test cases on which all

versions in the testing system fail identically will not be recognized, so the faults causing such failures

will not be investigated. This is a serious problem since it is certainly possible that programmers working

independently may make the same mistake. Faults that are common to all of the versions will never be

discovered by comparison testing. For an N-version system built for fault tolerance these are exactly the

faults that will not be tolerated. It therefore seems reasonable to dismiss comparison testing as worthless

(or worse).

On the other hand, given the ease with which comparison testing can be automated, it might be

worthy of further consideration. In evaluating its usefulness we need to know the likelihood that faults

common to all versions in a system will occur.

A multi-version experiment designed to determine whether independently developed versions fail

independently in a statistical sense was undertaken jointly by the University of Virginia and the

University of California at Irvine [21]. The experiment revealed that coincident failures occurred much

more often than would be expected if the versions were statistically independent. Our initial reaction was

to conclude that comparison testing would be a dangerous method to use in testing software for critical

applications, since it seemed that indepcndent development did not prevent programmers from making

c - B 8 -

e

a

e

c.

0

the same mistakes.

An investigation or the individual faults that occurred in the multi-version experiment was

undertaken in order to determine the reason for the large number of coincident failures that were observed

[3]. It turned out that a it is unrealistic to assume that two faults either are unrelated or result from the

same programmer error and are essentially identical. Faults that exhibited identical failure behavior were

very rare. It was much more common that two faults cause identical failure on some inputs, but that both

cause failure separately on other inputs as well.

To facilitate further discussion of the relationships among faults that affect the testing process, we .
define the failure subspace for a fault to be that subset of the input space on which the fault causes failure

to occur. The ability of comparison testing to reveal a particular fault will depend on the relationship

between that fault’s failure subspace and the failure subspaces associated with faults in other versions. If

a fault’s failure subspace does not overlap with that of any other fault, then comparison testing will be as

effective as any testing method can be in finding the fault since each time the fault causes failure, the

failure will be detected and investigated. On the other hand, if all other versions contain a fault with an

identical failure subspace and causing identical behavior when failure occurs, then none of these faults

can ever be detected using comparison testing.

The multi-version experiment indicates that the most likely situation is that intersecting failure

subspaces will occur, but that matching failure subspaces are unlikely. The effects of such incomplete

overlaps on comparison testing are not as clear, and must be studied in order to evaluate the comparison

testing method.

1.4. Organization of Remainder of Report

The purpose of this research is to examine, both analytically and empirically, the potential fault-

revealing power of comparison testing. Previous related research is discussed in the next chapter. A

c! -B9-

notational framework for this research is developed in Chapter 3. *
In Chapter 4, analytic models are developed for the cffccts of various failure subspace

interrelationships on comparison testing. These models are analyzed in Chapter 5.

The concept of the “overlap ratio” for a fault is introduced in Chapter 6, and the expected worst

case performance of comparison testing in finding a fault having a given overlap ratio is considered. The

variability of the performance of cornparison testing is discussed in Chapter 7.

The conclusions drawn from this research are summarized in Chapter 8. The research currently in

progress is discussed.

4 - B10 -

a

CHAPTER 2

PREVIOUS RESEARCH IN DYNAMIC TESTING

The most widely used method of assuring the quality of software is dynamic testing. This method

requires exercising the program using known inputs in a controlled environment. The outputs are

examined to determine whether the program processed each input correctly.

This chapter summarizes the research that has been done on the dynamic testing of software. This

review is intended to give an overview of the major areas of research on dynamic testing, not a

comprehensive coverage of all of the available literature.

Laski and Korel[22] have identified three questions that arise in planning a testing procedure:

(1) Which parts of the program should be tested?

a

e

(2) How should the program input data to exercise those parts be determined?

(3) How should the observed intermediate or final results be interpreted to assess the (in)correctness of

the program?

Research efforts in testing have been directed toward answering one or more of these three questions.

2.1. Testing Strategies

Laski and Korel’s first question indicates the need for a testing strategy. Most of the testing

strategies that have been developed are structural, i.e. based in some way on the structure of the program

being tested. This is why Laski and Korel say that the parts of the program to be tested must be

determined.

4 - B l 1 -

0

e

Structural testing strategies began with intuitive notions of what is necessary to ensure that a

program is “well-tested”. Clearly if a statement in a program has never been executed on any test case,

then we can have no assurance at all that-the statement is correct. A stutement testing strategy requires

that each statement be executed at least once during the testing process.

Huang [20] illustrates that flow-of-control errors, a class of common programming errors, can be

missed if a program is tested only to the extent of executing each statement at least once. He suggests

that an obvious solution would be to require the traversal of each control path in the program, but

observes that since most programs contain loops, the number of control paths would usually be

prohibitively large. Huang recommends a more realistic strategy that has become known as brunch

resting, which requires that every branch in the program’s flowchart be traversed.

Although branch testing is a more stringent strategy than statement testing, many researchers

consider it to be inadequate. The most thorough flow-of-control testing method is path resting, which

requires the execution of each control path. Since path testing is infeasible for many programs, many

researchers have tackled the problem of attempting to limit the number of test cases required to test a

program while attempting to retain, as much as possible, the fault-revealing power of path testing.

Howden [17] describes a boundary-interior strategy. A boundary test of a loop requires it to be

entered but not iterated; an interior test requires it to be entered and then iterated at least once. Testing

both the boundary and interior conditions of a loop permits the selection of a finite but “intuitively

complete” set of paths to be tested.

A hierarchy of criteria called Testing Effectiveness Ratios are defined by Woodward, Hedley, and

Hennell [33]. Rather than providing an absolute decision as to the adequacy of test data, these ratios

measure the extent of coverage. Each measures the number of subpaths of a given length that are

exercised by the test set as a ratio of the total number of subpaths of the given length.

- B12 -

c

e

m

a

Zeil and White [35] describe a method for analyzing the effectiveness of individual paths in testing

for predicate errors in linearly domained programs. Additional paths should be chosen for testing if they

reduce the dimension of the undetected error space. Zeil 1361 extends this analysis to determine paths

that will be effective in checking for domain emTs caused by incorrect computations.

Several researchers have explored the idea of using data flow analysis to aid in the selection of paths

to be tested. Laski and Korel [22], for example, define two path selection strategies based on data flow

relationships. The first requires that a path set contain at least one subpath between each variable

definition and each use reached by that definition. The other criterion is based on the concept of the datu

context of an instruction, which is the set of live definitions for all variables used in the instruction. The

strategy requires that each data context of every instruction be tested at least once. A more stringent

version of the second criterion imposes an order on the data context, based on the order in which the

definitions in the context are encountered. Each ordered data context must be tested at least once.

Ntafos [25] defines a class of path selection criteria that he calls “required k-tuples”. The basic

structural unit to be tested is a k-dr interaction. A k-dr interaction consists of k - 1 variables X I , x2,...,&-1

and k distinct statements sl, s2, ..., s k , such that a path visits the statements in the given order. Each si

contains a definition of a variable Xi that reaches a reference to Xi in si+l. This reference is used in

defining variable Xi+l . The required k-tuples strategy requires coverage of all k-dr interactions and

additional coverage for those having a last reference in a branch predicate or which occur at the beginning

or end of a loop. A class of strategies can be obtained by varying k.

A family of data-flow directed path selection strategies are discussed by Rapps and Weyuker [28].

Each variable occurrence is classified as a definitional (dej), computation-use (c-use), or predicate-use

(p-use) occurrence. The all-defs criterion requires that a path set contain at least one subpath from each

definition to some use reached by that definition. The all-uses criterion requires a subpath to each use

reached by each definition. AlZ-du-paths requires additionally that each cycle-frce and single-cycle path

-B13 -

a

0

Q

e

0

t

be included. Several suggested criteria distinguish between computation and predicate uses. The all-p-

uses criterion requires a subpath between a definition and all p-uses. All-p-useslsome-c-uses additionally

requires that for any definition reaching no p-uses, a subpath containing the definition and a c-use be

selected. The all-c-useslsome-p-uses criterion is defmed analogously. The authors offer no comment on

the relative value of their suggested strategies, except to point out the tradeoff between selecting a

“stronger” criterion, which will cause closer scrutinization of the program in an attempt to find faults,

and a “weaker” criterion, which can generally be satisfied using fewer test cases.

White and Cohen [32] take a somewhat different approach in their contribution to the literature on

path testing. Rather than concerning themselves with the problem of how to select the paths to be tested,

they focus on testing each path in a manner designed to detect any domain errors. The control flow

statements in a program partition the input space into domains consisting of input points that cause a

particular path to be executed. The domain testing straregy requires selection of points on each boundary

and a distance of &.from the boundary in order to detect a shift in the boundary or an error in the relational

operator. Some alternative domain testing strategies, designed to improve on the error bound for the

White and Cohen approach, are discussed by Clarke, Hassell, and Richardson [6].

The testing strategy presented by DeMillo, Lipton, and Sayward [8] relies on what they call the

“competent programmer hypothesis,” which asserts that programmers produce programs that are “close

to” the correct program. Their mutation testing approach requires that a test set be able to distinguish

between the original program and a set of “mutants”. The mutants are created by systematically

implanting small defects in the original program, on the theory that these changes model what the

programmer might have done wrong.

Howden [19] discusses a related strategy that he calls weak mutation testing. This strategy requires

the mutation of components of the program. The test set is considered adequate in recognizing a mutant

if the mutated component computes at least one “value” different from that computed by the original

m - B14 -

‘C

e

0

6

component (even if the final program output is the same). The advantage of “weak” over “strong”

mutation testing is that it does not require a separate program execution for each mutation, and that the

test data necessary to carry out a complete set of weak mutation tests can be more easily determined.

Mills [24] presents a technique that also relies on the introduction of random errors into a program.

The goal of this method is to calibrate the testing process to permit statistical inference about the

reliability of the tested program.

A number of researchers have pointed out that strategies based only on program structure are

inadequate in determining whether the domain partitioning created by the control structures in a program

is the same as that inherent in the problem that the program is designed to solve. In particular, no

structural strategy is likely to be effective in discovering missing path errors.

Goodenough and Gerhart [151 present the condition table method for finding the logically possible

combinations of conditions that can occur when the program is executed. In creating the condition table,

they recommend the examination of the general requirements the program is to satisfy and the program

specification in addition to the implementation itself. Similarly, Weyuker and Ostrand [31] suggest a

method in which the tester finds the intersection of the domains created by the program and those implicit

in the specification. Ntafos [25] incorporates features into his “required element” testing strategy that

allows the user to insert input and output assertions based on the specifications.

The simplest of all testing strategies is random testing. The test cases to be used are selected

randomly from the program’s input space. Duran and Ntafos defend this method in [111. They discuss

the question of whether uniform sampling or an operational profile should be used in selecting the test

cases, concluding that the operational profile is appropriate for estimating reliability, but that uniform

sampling may be more effective for error detection.
c

e - B15 -

e

a

0

a

The first major theoretical foundations for evaluating testing strategies were provided by

Goodenough and Gerhart [15]. Their major contribution was to show that it is possible, if a testing

strategy has certain properties, that testing can be used to demonstrate the absence of errors in a program.

An ideal test, which succeeds only when a program contains no errors, is both reliable (consistent in the

ability to reveal errors) and valid (able to reveal errors).

The Goodenough and Gerhart “reliable” and “valid” criteria are criticized by Weyuker and

Ostrand [31] for several reasons. One of the most serious criticisms is that, since all test selection criteria

are either reliable or valid, it is of no value to establish that a criterion has one of the necessary properties.

Weyuker and Ostrand present a theory based on the concept of revealing subdomains. They define a

subdomain as revealing if one of its members is processed incorrectly if and only if all of its members are

processed incorrectly. The tester’s goal, then, is to partition the input space into revealing subdomains.

Howden [18] shows that it is not possible to construct a testing strategy guaranteed to reveal all

errors. The reliability of path testing in revealing classes of errors that commonly occur is analyzed. The

reliabilities provide an upper bound for the reliabilities of the various path-selection strategies.

Gourlay [16] develops a mathematical framework and a unifying notation that provides a

mechanism for comparing the power of testing strategies that have been developed by other researchers.

Clarke et al. [7] provide a notation for comparing data flow path selection criteria and present a

subsumption graph showing the relationships among all the suggested criteria.

2.2. Test Data Selection

a

8

The second question posed by Laski and Korel [22] points to the problem of selecting test data to

implement a selected testing strategy.

- B16 -

0

c

a

a

0

For most of the testing strategies that have been suggested, the problem of determining whether a

given test set satisfies the criteria established by the strategy appears to be straightforward. Huang [20]

discusses the simple process of instrumenting a program in order to assess the adequacy of test coverage

for branch testing. Girgis and Woodward [13] have developed a tool that instruments a program and

reports on the completeness of test data with respect to the weak mutation strategy and a family of data

flow selection strategies.

A major difficulty that arises in attempting to satisfy any path testing strategy is the possible

existence of infeasible paths. Presumably a test will satisfy a given path testing strategy when all the

feasible paths required by the strategy have been executed. However, the determination of whether a

given path is feasible is, in general, unsolvable. Gabow, Maheshwari, and Osterweil [121 prove that even

when a tool that automatically generates “impossible pairs” of program statements is available, the

problem of determining whether an impossible pairs constrained path exists is NP-complete.

When instrumentation is used to determine the extent to which a test set has satisfied a criterion, the

testing strategy actually functions as a stopping criterion rather than a test data selection criterion. It

would be preferable if test cases to satisfy a criterion could be automatically generated.

Unfortunately, the problem of finding assignments that will satisfy a given path predicate is, in

general, unsolvable, so it is impossible to develop a general algorithm for selecting, a priori, test data that

will satisfy a given strategy. However, a number of researchers have developed methods that will work

with limitations on the program being tested. For example, Clarke [5] has developed a tool that, given a

completely specified program path containing only linear path constraints, will either determine that the

path is infeasible or will generate a test case that will cause the execution of the path.

- B17 -

*

2.3. Interpretation of Results

e

0

0

Thc third problem that arises in planning a tcst proccdure is that of interpreting the rcsults in order

to assess the correctness or incorrectness of the program. Although Laski and Korel [22] identify this

problem, their paper contains no suggestions regarding its solution. They, like most researchers in

testing, do not deal with this problem. Most do not even mention it. One who does is Gourlay [161, who

observes that “it should be easier to establish the correctness of a test than of the program as a whole.”

While Gourlay’s observation is reasonable from a theoretical viewpoint, as a practical matter the

determination of correct outputs is often inordinately time consuming. When expected results must be

hand-computed, the extent to which it is possible to automate the testing process is limited. Pam1 [26]

describes several automated testing systems. These systems facilitate retention of software tests (useful

for revalidating a system after a change) and free the tester from hand-checking the results as they appear.

However, all of the systems require that the tester supply in advance a database of test cases to be

executed, along with the expected outputs. The creation of this database is likely to require a large

investment in human resources.

A system that could generate inputs and then interpret the results without human intervention would

be extremely desirable. Since hardware resources are much less expensive than human resources, many

0

0

W

more test cases could be executed for the same cost.

Ramamoorthy et al. [27] describe their experience with a completely automatic testing system. It

utilized two versions of a nuclear reactor protection system, developed by independent teams at Babcock

and Wilcox and at the University of California at Berkeley. The testing system consistcd of an automatic

test data generator to create inputs and a dual program monitor and analyzer to identify test cases on

which failure occurred. If the results obtained by the versions agreed (within a specified numerical

threshold) the result was assumed to be correct. Otherwise both programs were analyzed, using the

originating requirements, to determine the reason for the deviation.

0 -B18 -

0

a

0

e

Gmeiner and Voges [141 also describe their experience in building and testing a two-version reactor

protection system. The programs in their system were comparison tested after the completion of all other

validation efforts. They report that 18 errors (approximately 14% of all detected errors) were found by

their automatic comparison program. They conclude that the automatic comparison program is a

valuable tool for the comparison of large amounts of data that would have been impossible to check

accurately by hand.

In the development of the dual redundant software for the Airbus Industrie A310 slat and flap

system, integration testing was begun without having performed module testing [23]. The explanation

given for omitting module testing is that the versions “each provide for the other the most stringent test

environments.’’

“Tracking” tests (automated dual-version comparison tests) were performed by the Commercial

Flight Systems Division at Sperry Corporation in validating the SP-300 Critical Flight Control System

[34]. Since the system designers were concerned about the possibility of faults common to the two

versions, the tracking tests were only a part of the entire validation effort. An analysis of the System

Problem Reports (SPR’s) that were generated during the development process [101 revealed no common

design implementation or coding errors. Also, the authors report that the use of comparison testing

significantly contributed to the timely delivery of software change loads during flight testing. Errors were

quickly discovered and eliminated during system level debugging.

Comparison testing is the only generally applicable method that has been suggested for automating

the process of determining correct program outputs. Although, as the above examples illustrate,

comparison testing has often been used or recommended, little research has been directed at evaluating

the method.

Saglietti and Ehrenberger [29] offer an analysis of the level of assurance of the reliability of a

comparison-tested N-version programming system. Their analysis is based on the assumption that the

- B19 -

a

e

0

probability that two versions will fail identically is less than the probability that they will disagree. They

present empirical evidence to show that this assumption is reasonable, and we agrce that the assumption

is likely to be true when comparison testing is initiated. However, after the versions have been tested

using comparison testing, the assumption is much less likely to hold. In fact, after exhaustive comparison

testing the probability of disagreement would be zero, but if the versions contain faults that cause only

identical failures, the probability of identical failure will be greater than zero. Thus the results presented

by Saglietti and Ehrenberger rely on a faulty assumption.

a

0

Empirical evidence on the value of comparison testing has been limited to the experience of those

who have used the method. The number of versions involved in each such study is two, and no effort has

been made in any study to observe the program characteristics that would affect comparison testing. In

some cases no testing other than comparison testing was performed, so it is not possible to study the

characteristics of faults found by other methods but not by comparison testing. In other cases comparison

testing was performed after the completion of conventional testing, allowing no observation of its

effectiveness in finding faults eliminated by the other methods. It was observed by many of the

researchers using the method that comparison testing was of value in finding faults missed by other

methods. The preliminary results indicate that comparison testing is deserving of further consideration.

-B20 -

CHAPTER 3

NOTATION USED TO DESCRIBE FAULT INTERRELATIONSHIPS

In this chapter the fault interrelationships that affect comparison testing are described. A notation

that will be used to represent these relationships is given.

3.1. Fault Interrelationships that Affect Comparison Testing

In order to determine the behavior of a comparison testing system in finding a particular fault, we

need to look closely at the relationship between that fault’s failure subspace and the failure subspaces of

other faults in the system. Figure 3.1 shows the intersecting failure subspaces for two faults A and B. For

0

a

e

0

Input Space

correct mapping

- - - - - -> mapping by program
containing fault A

3. mapping by program
containing fault B

Output Space

Figure 3.1. Illustration of Failure Subspaces

-B21-

0

a

0

points that are in each fault’s failure subspace, the fault causes an incorrect mapping into the output

space.

The points in the intersection of two subspaces can be divided into two classes. Figure 3.2

illustrates one member of each class. The point on the left is a member of the first class, the class of

points for which the faults cause non-identical failure. For these inputs, both faults cause failure, but the

symptoms of failure differ. The point on the right represents an input on which the versions containing

the faults fail identically. For these inputs the versions containing the faults obtain the same incorrect

output.

The reason for distinguishing between the two classes of points in the intersection of failure

subspaces is that they have different implications in a comparison testing system. If the point on the left

Input Space

A B
I

- correct mapping

- - - - - -> mapping by program
containing fault A

.......... 3. mapping by program
containing fault B

Output Space

Figure 3.2. Two Classes of Points in Failure Subspace Intersection

-B22 -

a

0

0

is sclectcd as a test case, both faults will be revealed. The point on the right will give identical outputs, so

the version failures will not be recognized and investigated. A comparison testing system cannot

distinguish such points from those lying outside of both failure subspaces.

In determining the information learned from each test case in a comparison testing system, it is

important to know to which of several classes the input belongs. For two faults the relevant classes are:

(1) Fault A causes failure but fault B does not. The point on the left in Figure 3.1 belongs to this class.

(2) Fault B causes failure but fault A does not. The point on the right in Figure 3.1 belongs to this

class.

(3) Both faults cause failure, but the outputs obtained by the programs containing the faults are

different. The point on the left in Figure 3.2 belongs to this class.

(4) The faults cause identical failure. The point on the right in Figure 3.2 belongs to this class.

3.2. Notation

a

0

Each of the classes in the input space will be denoted C,, where the subscript x denotes all of the

faults that cause failure in the class. Commas are used to separate the faults into equivalence classes

according to the output produced when failure occurs. For’ example, the subscript “ A &C ” would

indicate that faults A , B , and C all cause failure. The versions containing faults B and C obtain identical

incorrect outputs, while the version containing fault A obtains a different incorrect output. The

probabilities for the relevant classes for a two-fault system are, then:

(1) C,, : A causes failure, B does not

a

(1,

(2) C, : B causes failure, A does not

- B23 -

(3) CAB : both faults cause failure, but exhibit different symptoms
a

e

0

a

a

0

(4) C, : A and B cause idcntical failure

The probability that a randomly selected test case will fall into a particular class C, depends on the

selection distribution. If Q is the selection distribution, then Q(Cx) represents the probability that an

input from class C, is chosen. A shorthand notation, qx = Q(C,) , will be used to represent these

probabilities. So, for example, q A means the probability that an input will be selected on which fault A is

the only fault that causes failure.

These classifications and probabilities are based on the original condition of the versions, and are

not changed as the faults are found and corrected. For example, after fault B is corrected, q B retains its

original value and can be interpreted as the probability that fault B would have caused failure if it had not

been corrected.

Wc will be ifitcrested in finding the number uf tesl cases necessary to observe a fauit. T i s quantity

will be called the observation time for the fault. The observation time will be denoted T,, where the

subscript S identifies the testing system to which the parameter applies. This quantity is a random

variable. Its distribution measures the effectiveness of a testing system in finding the fault.

We will focus on the observation time distribution for a single fault in one of the versions in a

comparison testing system. This fault will always be labeled “ A ”. Since the analysis will not depend on

the selected fault, we will be able to determine the effectiveness of comparison testing in locating any

fault. Knowledge about the behavior of comparison testing in finding a single arbitrary fault can be

extended to determine its effectiveness in finding all faults.

The observation time for fault A , using comparison testing, will depend on the characteristics of

faults in the other versions that make up the testing system. These other versions will be called the

- B24 -

e

comparison versions. The faults in the comparison versions will be labeled with upper-case letters other

than A . When there are several faults in the same comparison version, all will be labeled with the same

letter, and subscripts will be used to distinguish them. For example, in a two-version system, there is a

single comparison version. Its n faults will be labeled B 1, B 2 , , . . . , B, .

- B25 -

CHAPTER 4

MARKOV MODELS OF FAULT OBSERVATION TIMES

In this chapter we develop models of the effects of interactions among faults on fault observation

time. We will make the following assumptions for all of these models:

(1) Each fault is corrected as soon as it is observed in the testing process.

(2) No new faults are introduced in the correction process.

(3) The other faults in the version containing the fault A on which our attention is focused do not

interfere in the observation of fault A .

e

0

e

0

a

Recall that in the comparison testing process a test case results in an investigation whenever there is

a disagreement among the versions, so test cases on which a fault is triggered result in the observation of

that fault unless all comparison versions fail in an identical manner. Thus the only faults which affect the

observation time for a fault are faults in comparison versions that cause identical failure symptoms. The

effects on comparison testing of faults causing identical failures are modeled here. The existence of other

faults that never cause the same failure symptoms as a given fault does not affect the applicability of a

model in predicting the observation time for that fault.

4.1. A Single Fault Interaction

In this section we consider a comparison testing system consisting of two versions. We will focus

on the problem of dctermining the observation time for some fault A in one of the versions. A single

fault (labeled B) in the comparison version causes identical failure symptoms as fault A .

a - B26 -

a

e

a

a

0

e

a

a

The comparison testing process for this testing system is a discrete-time stochastic process that can

be modeled by the Markov model illustrated in Figure 4.1. Each state in the Markov .chain reprcsents a

state of knowledge about the faults in the programs during the testing process. Each pi, represents the

probability that a single test case will cause a transition from state Si to state Si.

Testing begins in state S1, which represents the condition of having no knowledge of any faults in

either program. The objective of the testing process is to reach state S3, which represents the condition of

having found fault A . State S2 is the state in which fault B has been detected (and therefore corrected) but

fault A has not yet been found.

In state SI we have no knowledge of any faults, so we can observe the presence of a fault only if

either exactly one version fails or both versions fail and obtain different outputs. If no faults are revealed

we remain in S1, so pll is (1 - (q A + + q A $)) . Fault A will be revealed if only A causes failure or if both

versions fail differently, so p 13 is (q A + q A J) . If only fault B causes failure, B will be revealed but not A ,

so P 12 is qB *

P13=

P 3 3 = 1

e

0

p23=qA + q A $ +qAB

Figure 4.1. Markov Model of the Effects of Single Fault Interaction

- B27 -

0

a

e

0

e

e

Once fault B has been observed and corrected, any failure of the program containing fault A will be

detected, so pu is (qA+qA&+qM). If A does not cause failure, we remain in state Sz, so p p is

(l - (q A + q A & + 4 M)) *

State S 3 is an absorbing state. Once we have found A , we have attained all of the knowledge that is

of interest, so p 3 3 is 1.

The quantity of interest is the observation time for fault A . In terms of the Markov model, this

quantity is thefrrst-passage time K13. In general the first-passage time Ki, is the first time after time 0 at

which a process is observed to be in state Si, after having been initially in state Si [9]. We are interested in

the probability distribution of the discrete random variable K I 3 .

It is possible to amve at state S 3 for the first time at time t by either of two routes:

(1) Remain in state S1 for (t - 1) test cases, and then move to S3 on the tth test case. The probability

that this will occur is:

0
(2) Remain in state S1 for (i - 1) test cases (1 I i I t - l), then move to state S2, remaining for (t - i - 1)

test cases, finally moving to S3 on the nh test case. The probability that this will occur, for each

a

0

value of i, is:

0

0

0

e

0

e

e

0

Let mij represent the expected value of the first-passage time from Si to Si. Then m13, the expected

value of K13, can be found by solving the following set of equations [9]:

13 = +P 1 I m 13 P lZm 23

m 3 3 = 1+p31m13+P32m23

Substituting the values of pii for this Markov chain yields the set of equations:

m33= 1

Solving this system of equations yields:

4.2. Multiple Fault Overlaps in a Two-Version System

The behavior of comparison testing in revealing a fault that causes identical failures with more than

one fault in the comparison version is considered in this section. The faults in the comparison version

causing failures identical to those caused by fault A are faults B B , B3, Bn .

We make the following assumptions in addition to those listed at the beginning of this chapter:

e

0

e

(1) When a disagreement among versions arises, an effort will be directed toward finding the cause of

the disagreement. The intermediate results of the two versions will be compared to narrow down

the source of the disagreement. Thus only the fault or faults responsible for disagreements between

the versions will be observed and corrected. For example, if, on a given test case, faults A and B

which cause identical symptoms, are both triggered, and fault B3, which causes distinct symptoms,

is triggered as well, then only fault B will be corrected.

0
- B29 -

a

a

a

a

a

(2) Two faults in the comparison version that are triggered on the same test case will cause distinct

symptoms. Both faults must be corrected in order to achieve the correct output for the input that

triggers them.

(3) If, for a particular test case, none of the individual faults in the comparison version causes identical

failure with fault A , then it is not possible for any combination of these faults to result in an

identical failure.

The table in Figure 4.2 shows all of the relevant subspaces of the input space, given the above

assumptions, for the case in which fault A interacts with two faults, B , and B,. The first column in the

table gives the faults triggered by inputs in the subspace. These are assigned to sets according to the

symptoms of failure caused by the faults. Faults causing identical failure on an input in the subspace are

assigned to the same set. The second column gives the probability that an input from the subspace will be

a

a

a

Faults Triggered Probability Faults Observed

Figure 4.2. Relevant Subspaces for Interaction with Two Faults

- B30 -

a

a

e

selected. The third column shows which of the triggered faults can be observed, assuming no prior

knowledge of any of the faults.

The process of finding faults through comparison testing can be modeled by a Markov chain similar

to the one discussed in the previous section. The two-overlap model is illustrated in Figure 4.3. In

addition to the transitions shown in the figure, there is a transition from each state i to itself, with

probability pi;.

As in the Markov model discussed in Section 4.1, each state represents the state of knowledge about

the faults in the versions. In the general n -fault case, there are 2" intermediate states. Each intermediate

state is associated with one of the subsets of the set p = (B , , B , B , ..., B n } . Let vi be the set of faults

e

e

n

a

Figure 4.3. Markov Model for Interaction with Two Faults

- B31-

0

associated with state Si . Then state Si represents the state in which every fault in vi has been found. yrl,

the set associated with the initial state, is the empty set, since testing begins with no knowledge of any

faults. There is a single additional final state Sf cf = 2" + l), which represents the state in which fault A ,

the fault of interest, has been found.

To facilitate discussion in defining the transition probabilities pij (1 5 i I 2" + 1 . 1 I j I 2" + 1), let

L (vk) be a listing of the elements in set y f k , i.e. if

0

then

e
A transition between an intermediate state Si and the final state Sf occurs whenever fault A is

observed. Fault A can be observed whenever both of the following conditions are satisfied:

0
(1) Fault A causes failure.

0

0

e

0

(2) Any fault in the comparison version that causes the same symptoms of failure as fault A has already

been found.

Thus for (1 Ii 52", f =2" + 1) we have:

where ZP and 2&(xl denote the power sets of p = (B B 2 , ..., B, 1 and (p - (X)) respectively.

A transition between two intermediate states Si and Sj occurs when a test case is selected which

reveals a previously undiscovered fault (or faults) in the comparison program (but not fault A , since its

discovery leads to the final state). Knowledge of a previously discovered fault is never lost. Thus for

(1 I i I Z", 1 I j I 2", i # j) we have:

0 - B32 -

0

e

0

0

e

e

where l o Pi j =
otherwise

The probabilities of remaining in each state can be determined in terms of the other transition

probabilities:

pii = 1 - Dii (1 I i S 2" + 1 , 1 I j 52" + 1).
j+ i

The transition probabilities for the two-fault model shown in Figure 4.3 are, in accordance with the

above rules:

e - B33 -

e

p s s = 1
a

As in the case of a single fault interaction, the quantity of interest is the first-passage time Klf . The

expected value of this random variable, mlf , can be-found by solving this set of simultaneous equations

e P I :

0

0

e

0

a

0

a - B34 -

e

a

a

0

a

e

e

e

CHAPTER 5

AN ANALYSIS OF MODEL IMPLICATIONS

In Chapter 4 models were developed that show how fault interactions affect the performance of

comparison testing. These models can be used to predict the performance characteristics of a comparison

testing system composed of versions containing faults whose interactions are known. Thus these models

can be used to interpret empirical data such as that available from the N-version experiment. However,

the expressions for the observation time distributions derived from the models are complex and depend

on a large number of parameters. Such expressions do not lend themselves to an intuitive understanding

of important relationships and parameter sensitivities.

In this chapter the simplest of our models, the single fault interaction model introduced in Section

4.1, is reparameterized. A simplifying assumption is used to yield a more easily understood formula for

the expected value of the fault observation time.

5.1. A Basis for Evaluation: The Ideal Test Bed

It is not possible to evaluate a method adequately without comparing it to the alternatives. The

ideal alternative to comparison testing would be a system in which an oracle would evaluate the

correctness of any result computed by the program being tested. Of course if an automated oracle were

available we would not consider using comparison testing.

a
In applications for which comparison testing would be considered, the alternative test-interpreter

would likely be one of the following:

a
(1) An automatic “envelope oracle” may be available. For example, in testing flight control software a

flight simulator is generally used. The flight simulator will detect those incorrect outputs that would

a -B35 -

0

e

e

cause an observably incorrect flight pattern. A fault that causes serious consequences during

simulation testing will be observed. However, a fault that sometimes has serious consequences may

under some circumstances cause incorrect outputs that are “close enough” to cause no observable

flight pattern anomaly. Thus there may be test cases for which a serious fault is triggered but not

detected.

An unautomated “near oracle” may be available. Test outputs are often evaluated by performing a

hand calculation. This type of verification provides at best a “near oracle” since the calculation

itself is subject to human error. It is also possible that the algorithm used in the hand calculation

contains faults. In a sense, the hand calculation can be viewed as another version, so that a tedious

form of comparison testing may be the alternative to an automated comparison testing system.

Whatever the alternatives, they can be no better than an ideal, oracle-based testing system. If the

fault-revealing power of comparison testing approaches the ideal, then it provides a valuable alternative

or supplementary approach where conventional methods provide only an envelope or an unautomatable,

unreliable correctness test.

In an ideal test bed it would be possible to observe a fault on the first test case on which it causes

failure. With respect to revealing a particular fault each test case is a Bernoulli trial, with “success”

defined as finding a case on which the particular fault is triggered. Therefore the observation time Tidca,

for fault A in an ideal test bed follows a geometric distribution with parameter p = qA + qAB + qAB. ~ t s

distribution, then. is [2]:

e

- B36 -

e

5.2. Performance of Comparison Testing
e

a

0

e

A comparison testing system differs from the ideal in that identical failures of the versions

comprising the system hide the faults that cause these failures. The effect of these identical failures will

be a (possibly infinite) delay in observing the faults that cause them. The observation times for faults that

cause identical failures will be longer in a comparison testing system than in an ideal test bed.

Here we reconsider the model developed in Section 4.1. In this model the fault under consideration

(fault A) causes failures identical to those caused by only one fault (B) in the comparison version. The

expression derived for the expected fault observation time is:

The model depends on the classification of test cases into one of the four classes CA , CE , CA &, and

C, . Notice that test cases in CAa reveal the same information about fault A as those in CA. Therefore

we can combine the two classes into cA = CA&, . The probability of selecting an input in this class is

dA = qA + q A J . Thus the expression for the expected fault observation time becomes:

0

e

a

Let p be the probability that fault A causes failure, and let r = be the ratio of the coincident

identical failures to the total failures caused by the fault under examination. Using this notation we have:

P

For the purposes of further analysis, we assume that, on L.e average, the probability of

caused by fault B is equal to the probability of failure caused by fault A , so we assume that:

ilure

- B37 -

a

e

q B =q* = (1 - r)p .

The sensitivity of the observation time to this quantity will be considercd in Chapter 6. With this

assumption we have:

2 - r
p (2 - 2 r) * E [Tcompm30n 1 =

Applying the same assumptions and notation to compute the expected time to find a fault in an ideal

test bed gives:

e

Whether comparison testing or an oracle is used, the observation time for a fault is inversely

proportional to p , the probability that the fault manifests itself on a randomly selected test case. The

ratio:

E [Tcomparison I
E [Tidoel]

2 - r
2 - 2r '

-- -

then, depends only on r and gives a measure of the effect of using comparison testing. The curve in

E [Tcomporiron 1
E [Ti&, I

Figure 5.1 shows the functional relationship between r and

It is interesting that, unless r is very large, the observation time for a fault is not much greater than

becomes infinite. E [Tcompnjon 3
E [Tidal 1

it would be if an oracle were available. As expected, as r approaches 1,

If a fault in one of the two versions in a comparison testing system occurs on the exact subset of test cases

as a fault in the other version, then none of the failures caused by either fault is detectable by comparison

testing, and neither of &e two faults will ever be found.

- B38 -

e

a

e

e

e

e

e

e

a

a

30

25

20

15

10

5

I I I

0.10 0.20. 0.30

~compar i ron

Tideal
r vs.

Figure 5.1. Effect of ron Fault Observation Time

e -B39 -

0

e

a

a

0

a

CHAPTER 6

WORST CASE ANALYSIS

In this analysis of comparison testing we are particularly concerned with finding the maximum

penalty that will result from using comparison testing rather than some other method that more closely

approaches the ideal. In this chapter we define the concept of the overrap ratio for a fault, and obtain

bounds on the expected value of the fault observation time for a fault having a given probability of

occurrence and overlap ratio.

6.1. Worst Case Performance with Single Fault Overlap

In this section we consider again the model for a two-version system in which a single fault

interaction involves fault A . The initial discussion of the model can be found in Section 4.1. Our goal

here is to simplify the expression for the expected cornparison testing observation time by eliminating q B

as a parameter. In eliminating q B we want to ensure that we obtain the worst case performance of the

testing system, assuming that other parameters remain fixed.

We begin by finding the value of that will maximize:

given that al l other quantities remain constant.

The partial derivative of this quantity with respect to is:

Each q, is a probability, and therefore can Only take on values in the range 0 I q1 51. In dctermining

the meaning of the partial dcnvativc, several cases are rclcvant:

- B40 -

a

1

0

0

(1) When either of the quantities (q A + qA5 + qAB) or (q A + qe + q A , B) is zero, the partial dcrivativc is

infinite. But if either quantity is zero then EITcowriton] is infinite, regardlcss of the value of qe. For

this case, then, any value of qe will maximize E [Tco,,~anl.

(2) When qAB is zero the partial derivative is zero for all values of qe. Therefore the value of 4s has no

effect on E [Tcompariron]. This result is expected, since finding B affects the state of our knowledge

about A only when qAB is nonzero, and so the probability of finding only B is irrelevant. When qAB

is zero the Markov model can be reduced to two states by combining states SI and S2, because the

transitions from each of these states to S3, the state of interest, are equally likely. For this case also,

then, any value of q B will maximize E [Tcomporiron].

(3) When q B and each of the quantities (q A + q A 5 + qAB) and (q A + q B + q A J) is positive, the partial

derivative is negative, indicating that E [TcoWriron] decreases as 48 increases. Its maximum value,

then occurs at the minimum value of q B , zero.

Substituting q B = 0 into the expression for the expected observation time derived from the Markov

model yields:

Using the notation of Section 5.2, we have:

0

0

This is not a surprising result if we examine the way in which faults are found in a comparison

testing system. In the two-version, single fault interaction system on which this analysis is based, fault A

0

can be observed by either of two methods:

- B41-

0

IO

0

l
e

(1) A test case in C, or CAa can be selected, resulting in the immediate observation of fault A .

(2) A test case in C, can be selected, resulting in the observation and correction of fault B .

Subsequently fault A can be observed on test cases in C, , as well as on those in CA and CAa .

These two methods correspond to the two routes from state SI to state S3 in the Markov model.

When qB is zero, the second route is cut off. State S2, in which B has been observed but A has not,

is unreachable. The only way to observe fault A is the direct method of observing a test case in CA or

CAB.

With q, = 0, each test case is a Bernoulli trial, with “success” in observing a fault occurring when a

test case in C,., or CAS is selected. The probability of success on each test case is:

4.4 + q A $ = (l - r) P -

The observation time would follow a geometric distribution with parameter p̂ = (1 - r) p :

1
(1 - r>P * E [Tcompwion I =

This is the same result obtained by substituting 48 = 0 into the expression for E [Tcowariron] obtained from

the Markov model.

E [Tcompruison I
E [Tided 1

The upper curve in Figure 6.1 is the upper bound on that occurs when q, = 0. The

basic shape of the curve is the same as that of the lower curve, which is based on the “average” q, , i.e.

q B = 4,. This indicates that measuring the ratio:

qAB
P

r = -

provides sufficient information to determine whether comparison testing will be an effective approach to

finding the fault. We will refer to this quantity as the overrap ratio for fault A .

-B42 -

0

0

0

a

e

c

0

30

25

20

15

10

C

Figure 6.1. Comparison of Worst and “Average” Case

,
I I I I 1

0.10 0.20- 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1 .oo
Tcomporison

Tideal
Fault Overlap Ratio vs.

-B43 -

0
6.2. Extended Definition of Overlap Ratio

The reason that a comparison tcsting system may be less effective than the ideal in revealing a given

fault is that faults in the comparison versions may cause identical failures with the fault, causing that fault

to be at least partially “hidden” from the tester. The portion of the input space in which fault A causes

failure and all comparison versions contain faults which cause identical failure can be thought of as the

overlap subspace. The overlap ratio for a fault can be defined as the ratio of the probability of selecting a

test case in the fault’s overlap subspace to the probability of selecting a test case in the fault’s failure

subspace.

This extended definition for the overlap ratio is consistent with the definition given in the previous

section for the overlap ratio in a two-version, single interaction system. The definition for a general two-

version system (as described in Section 4.2) is:

P

In general a fault A can be found by either of two approaches:

(1) A test case on which fault A is triggered and at least one other version disagrees with the version

containing A .

e

0

(2) Some fault in a comparison version is observed and eliminated. Subsequently a test case on which

that fault would have caused an identical failure with A is selected, resulting in the observation of

fault A .

For a fault having a given overlap ratio, the worst performance of a comparison testing system will

occur when none of the faults that cause identical failures are independently observable, Le. the first

approach is the only approach that can lead to the observation of the fault. In that situation fault A can be

. B44 -

a

a

observed only by selecting a test case in which it does not cause identical failure with any other fault.

The observation time follows a geometric distribution with parameter:

p^ = (1 - r) p

as described in the previous section.

e

0 -B45 -

*

0

CHAPTER 7

DISPERSIONS OF OBSERVATION TIME DISTRIBUTIONS

The analysis up to this point has been based entirely on the relationship between the expected

values of Tcompariron and Tidral. We are also interested in the relative dispersions of the probability

distributions, since a wide variability in observation times would indicate a variability in the performance

of the related testing method.

7.1. Variances

In order to compare the dispersion of observation times in comparison testing with the ideal, we

calculate the variances of the probability distributions.

Recall that Tidcol followed a geometric distribution with parameter p . Its variance, then, is [2]:

Q

c

0

e

We are primarily interested in the variance for the worst-case performance of comparison testing.

As explained in Chapter 6, the worst-case observation time for a fault having overlap ratio r follows a

geometric distribution with parameterd = (I - r) p . Its variance, then, is:

Since we assume- that faults with very high probabilities of occurrence will be eliminated before

testing begins, and since such faults are easier to find by any testing method, we are primarily interestcd

in studying the effectiveness of comparison testing in finding faults with small probabilities of

occurrence, i.e. faults having small values of p . When p is very small, both p and rp are much smallcr

than one, so we have:

0 - B46 -

*
and

0

0

1

P
v tTidcdl= 7

and so, since the standard deviation (3 is the square root of the variance [2], we have:

and

Both of the standard deviations of the populations are approximately equal to the population means,

indicating that both distributions are fairly flat and wide. Both testing methods, then, exhibit a variability

in effectiveness. The variability in performance of comparison testing, as well as its expected

performance, becomes increasingly worse than the ideal as r increases.

7.2. Confidence Interval Bounds

In order to find a more meaningful measure of the effects of observation time dispersion on the

performance of comparison testing, consider the goal of the testing process. Since the purpose of testing

software is to assure its quality, we want to ensure that there is a high probability that each fault will be

removed. For example, we might want to perform the number of tests necessary to ensure that there is a

0.95 probability that a given fault will be observed. It is necessary, then, to determine the value of U

such that:

P (T I U) = 0.95.

In general, we want to find U , the upper bound on the one-sided confidence interval, such that:

e

P (T 5 U) = c.

- B47 -

so

a

The probability distribution for Tihd is the geometric distribution [2]:

implies that

U
r=1 CP (1 -p)'-l = c

1 - (1 -p)V'+'

P [1 - (1 - p)] = c
(1 --P)U+' = 1 - c

For cornpanson testing, again consider the case in which qB and qAB are both zero. For this case

the probability distribution for Tcomporiron is:

implies
e

Since Uidrol and UcoWariron represent the number of tests necessary to achieve a 95% probability of
0

finding a fault, the ratio:

l 0 N - P)
provides a measure of the performance of comparison testing as compared to an ideal test bed.

- B48 -

*

r = 0.50 r = 0.98

*

0.50
0.90
0.95
0.99

693,146 1,386,293
2,302,583 4,605,168
2,995,730 5,991,462
4,605,167 9,210,337

0

2.0000019
2.0000009
2.0000008
2.0000007 a

34,657,358 50.0000952
115,129,252 50.0000458
149,786,611 50.0000408
230,258,506 50.000035 1

Unfortunately, unlike the ratio of expected values, the ratio of confidence interval bounds dcpends on the

values of p and C as well as r , so the bound ratio is not as easy to intcrprct.

The number of test cases needed to achieve a given confidence that a fault will be observed

increases as the confidence level increases. For example, the table in Figure 7.1 shows the effect of the

choice of confidence level on the upper bound of the confidence interval when p = lo4. The confidence

interval bounds for an ideal test bed are shown in the second column of the table. The bounds for a

comparison testing system were computed for two values of the overlap ratio, 0.50 and 0.98. These

bounds are shown in the third and fifth columns of Figure 7.1. The confidence interval bound incrcascs

rapidly as the confidence level increases for both the comparison testing system and the ideal test bed.

The ratios of bounds (see the fourth and sixth columns), however, remain nearly constant for each of the

values of r , at least for the parameter values used in constructing the table. If the ratio of bounds exhibits

the same constant behavior over the relevant ranges for the parameters p and C , then this ratio provides a

good measure of the performance of comparison testing.

Figure 7.1. Effect of Confidence Level on Confidence Interval Bound

e

(L

0

0

0

0

0

e

0

Since we are interested in determining the performance of comparison testing in finding faults with

realistic occurrence rates, the relevant range for the parameter p is approximately lo-" I p I A fault

with a probability of occurrence greater than will probably be eliminated in the debugging stage

before testing for quality assurance begins. Faults with occurrence rates less than lo-" are unlikely to be

found by any testing method, and so will be regarded as irrelevant in evaluating comparison testing.

A testing method should be able to achieve a high level of confidence that a given fault is

eliminated, so in evaluating comparison testing the number of tests necessary to achieve relatively high

confidence levels is of interest. The relevant range for C, then, is assumed to be C 2 0.90.

In order to determine the behavior of the ratio of confidence interval bounds over the relevant

parameter ranges, the ratio was computed for all combinations of these values for p and C :

-

r

0.05
0.25
0.45
0.60
0.75
0.85
0.90
0.95
0.98

E [Tcomporison I
E [Tide, I

1.0526
1.3333
1.8182
2.5000
4.0000
6.6667

10.0000
20.0000
50.0000,

Minimum Ratio
of Confidence

Interval Bounds

1.0526
1.3333
1.8182
2.5000
4.0000
6.6667

10.0000
20.0000
50.0000

0.99999
0.99999
0.99999
0.99999
0.99999
0.99999
0.99999
0.9 9 9 9 9
0.99999

P

lo?
10-'O
10-'O
10-l0
10-'O
10-'O
10-'O
10-'O
lo-s

Maximum Ratio
of Confidence

Interval Bounds

1.053 1
1.3365
1 A259
2.5 142
4.0283
6.7202

10.0850
20.1794
50.4625

0.90
0.90
0.90
0.90 lo-'
0.90
0.90
0.90
0.90
0.90

Figure 7.2. Confidence Interval Bound Ratios Over Relevant Range

0

a

*

0

0

0

p = 10-'0,10-*, 10-6, lo4,

C = 0.90,0.95,0.99,0.99999

The table in Figure 7.2. summarizes the results of these calculations for various values of r . The

is given in the third column. The next two columns give the values of C Ucomporiron

u i h a l
minimum value for

. Similarly, the last three columns give the maximum Ucompariwn

uiciea1
and p that gave the minimum value of

and the values of C and p used in calculating the maximum value. Ucomporiron

uirieal
value of

is almost a function of r over the range of relevant values Ucomparison

Vide,,
Figure 7.2. shows that the ratio

for p and C, since the minimum value of the ratio is almost equal to its maximum value. Also, the ratio

is virtually equal to the ratio of expected values Ucomp-n

uicieai
of confidence interval bounds

EL'''comprison1 -- 1 -
E [Tideal I 1 - r '

Since the expected values have the same relationship as the confidence interval bounds, the ratio of

expected values gives a complete measure of the effectiveness of comparison testing as compared to an

ideal test bed.

-B51-

e
CHAPTER 8

CONCLUSIONS

e

e

e

The effectiveness of comparison testing in finding a fault depends on the fault’s overlap ratio. The

analytic models developed here show that the fault-revealing power of comparison testing is almost as

good as that of an ideal test bed for all faults except those having overlap ratios very close to one. The

empirical evidence from the multi-version experiment [21] is being analyzed to provide an example of the

distribution of overlap ratios that may occur in practice.

Models of two-version comparison testing systems have been presented here. We are in the process

of developing models of systems containing more than two versions. The overlap ratio for a fault is a

random variable whose value depends on the versions chosen as comparison versions. The effect of the

number of versions on the distribution of overlap ratios will also be modeled.

The reliability of single versions and operational N-version systems that have been tested using

comparison testing is also of interest. A model for the expected reliability of comparison-tested systems

is being developed.

e

- B52 -

e

0
REFERENCES

e

e

a

e

*

a

a

0

A. Avizienis, Fault-Tolerance: The Survival Attribute of Digital Systems, Proceedings of the
IEEE, October 1978, pp. 1109-1 124.

L. Blank, Statistical Procedures for Engineering, Management, and Science, McGraw-Hill, New
York, 1980.

S . S . Brilliant, Analysis of Faults in a Multi-Version Software Experiment, Master’s Thesis,
University of Virginia, May 1985.

L. Chen and A. Avizienis, N-Version Programming: A Fault-Tolerance Approach to Reliability of
Software Operation, Digest FTCS-8: Eighth Annual International Conference on Fault Tolerant
Computing, Tolouse, France, June 1978, pp. 3-9.

L. A. Clarke, A System to Generate Test Data and Symbolically Execute Programs, IEEE
Transactions on SofhYare Engineering, September 1976, pp. 2 15-222.

L. A. Clarke, J. Hassell and D. J. Richardson, A Close Look at Domain Testing, IEEE Transactions
on Software Engineering, July 1982, pp. 380-390.

L. A. Clarke, A. Podprski, D. J. Richardson and S . J. Ziel, A Comparison of Data Flow Path
Selection Criteria, Proceedings of the 8th International Conference on Software Engineering,
London, August 1985, pp. 244-251.

R. A. DeMillo, R. J. Lipton and F. G. Sayward, Hints on Test Data Selection: Help for the
Practicing Programmer, Computer, April 1978, pp. 34-41.

C. Derman, L. J. Glesar and I. Olkin, A Guide to Probability Theory and Application, Holt,
Rinehart and Winston, Inc., New York, 1973.

B. T. Devlin, L. Miller, B. Beuter and E. Swart, SP-300 Application Software SPR Analysis, Speny
Corporation, Phoenix, Arizona, May 1985.

J. W. Duran and S . C. Ntafos, An Evaluation of Random Testing, IEEE Transactions on Software
Engineering, July 1984, pp. 438-444.

-B53 -

a

0

a

0

[12] H. N. Gabow, S . N. Maheshwari and L. J. Ostenveil, On Two Problems in the Generation of
Program Test Paths, IEEE Transactions on Soffware Engineering, Scptember 1976, pp. 227-23 1.

[13] M. R. Girgis and M. R. Woodward, An Integrated System for Program Testing Using Weak
Mutation and Data Flow, Proceedings of the 8th International Conference on Software
Engineering, London, August 1985, pp. 3 13-3 19.

[14] L. Gmeiner and U. Voges, Software Diversity in Reactor Protection Systems: An Experiment, in
Safety of Computer Control Systems, R. Lauber (ed.), Pergamon Press, 1980,75-79.

[15] J. B. Goodenough and S . L. Gerhart, Toward a Theory of Test Data Selection, IEEE Transactions
on Soffware Engineering, June 1975, pp. 156-173.

[16] J. S . Gourlay, A Mathematical Framework for the Investigation of Testing, IEEE Transactions on
Software Engineering, November 1983, pp. 686-709.

[17] W. E. Howden, Methodology for the Generation of Test Data, IEEE Transactions on Computers,
May 1975, pp. 554-559.

[181 W. E. Howden, Reliability of the Path Analysis Testing Strategy, IEEE Transactions on Software
Engineering, September 1976, pp. 208-215.

[19] W. E. Howden, Weak Mutation Testing and Completeness of Test Sets, IEEE Transactions on
Software Engineering, July 1982, pp. 371-379.

[20] J. C. Huang, An Approach to Program Testing, ACM Computing Surveys, September 1975, pp.
113-128.

E211 J. C. Knight, N. G. Leveson and L. D. St. Jean, A Large Scale Experiment in N-Version
Programming, Digest FTCS-15: Fifteenth Annual International Conference on Fault Tolerant
Computing, Ann Arbor, Michigan, June 1985.

a
[22] J. W. Laski and B. Korel, A Data Flow Oriented Program Testing Strategy, IEEE Transactions on

Software Engineering, May 1983, pp. 347-354.

a [231 D. J. Martin, Dissimilar Software in High Integrity Applications in Flight Controls, Soffware for
Avionics, AGARD Conference Proceedings, September 1982, pp. 36- 1 - 36-13.

- B51-

[24] H. D. Mills, On the Statistical Validation of Computer Programs, Technical Report FSC 72-6015,
IBM Federal Systems Division, Gaithersburg, MD, 1972.

[25] S . C. Ntafos, On Required Element Testing, IEEE Transactions on Software Engineering,
November 1984, pp. 795-8033.

[26] D. J. Panzl, Automatic Software Test Drivers, Computer, April 1978, pp. 45-50.

[27] C. V. Ramamoorthy, Y. R. Mok, F. B. Bastani, G. H. Chin and K. Suzuki, Application of a
Methodology for the Development and Validation of Reliable Process Control Software, IEEE
Transactions of Software Engineering, November 1981, pp. 537-555.

[28] S . Rapps and E. J. Weyuker, Selecting Software Test Data Using Data Flow Information, IEEE
Transactions on So f iare Engineering, April 1985, pp. 367-375.

[29] F. Saglietti and W. Ehrenberger, Software Diversity - Some Considerations About Its Benefits and
Its Limitations, Digest of Papers, SAFECOMP '86,Sth International Workshop on Achieving Safe
Real-Time Computer Systems, France, October 1986.

[30] J. R. Taylor, Letter from the Editor, Software Engineering Notes, January 1981, pp. 1-2. , quote
from letter to P. Neumann.

[31] E. J. Weyuker and T. J. Ostrand, Theories of Program Testing and the Application of Revealing
Subdomains, IEEE Transactions on Software Engineering, May 1980, pp. 236-246.

[32] L. J. White and E. I. Cohen, A Domain Strategy for Computer Program Testing, IEEE Transactions
on Sofmare Engineering, May 1980, pp. 247-257.

[33] M. R. Woodward, D. Hedley and M. A. Hennell, Experience with Path Analysis and Testing of
Programs, IEEE Transactions on Software Engineering, May 1980, pp. 278-286.

[34] L. J. Yount, K. A. Liebel and B. H. Hill, Fault Effect Protection and Partitioning for Fly-by-
Wiremy-by-Light Avionics Systems, Proceedings of Computers in Aerospace V Conference, Long
Beach, CA, August 1985.

[35] S . J. Zeil and L. J. White, Sufficient Test Sets for Path Analysis Testing Stratcgies, Proceedings of
the 5th International Conference on Software Engineering, 198 1.

- B55 -

a
[36] S. J. a i l , Testing for Perturbations of Program Statements, IEEE Transactions on Software

Engineering, May 1983, pp. 335-346.

e

e

DISTRIBUTION LIST

0

Copy No.

1 - 3

4 - 5*

e

e

National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665

AtLentiox Mr. Gerard E. Migneault
ISD M/S 130

NASA Scientific and Technical Information
Facility

P.O. Box 8757
Baltimore/Washington International Airport
Baltimore, Maryland 21240

6 - 7 J. C. Knight, CS

8 R. P. Cook, CS

9 - 10 E. H. Pancake, Clark Hall

11 SEAS Publications Files

*1 reproducible copy

e

e

e

e 8716/267R/ald

0

0

0

e

0

UNIVERSITY OF VIRGINIA
School of Engineering and Applied Science

The University of Virginia’s School of Engineering and Applied Science has an undergraduate
enrollment of approximately 1,500 students with a graduate enrollment of approximately 500. There are
125 faculty members, a majority of whom conduct research in addition to teaching.

Research is a vital part of the educational program and interests parallel academic specialties. These
range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical and
Aerospace to newer, more specialized fields of Biomedical Engineering, Systems Engineering, Materials
Science, Nuclear Engineering and Engineering Physics, Applied Mathematics and Computer Science.
Within these disciplines there are well equipped laboratories for conducting highly specialized research.
All departments offer the doctorate; Biomedical and Materials Science grant only graduate degrees. In
addition, courses in the humanities are offered within the School.

The University of Virginia (which includes approximately 1,500 full-time faculty and a total full-time
student enrollment of about 16,000), also offers professional degrees under the schools of Architecture,
Law, Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College of
Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant to the
engineering research program. The School of Engineering and Applied Science is an integral part of this
University community which provides opportunities for interdisciplinary work in pursuit of the basic goals
of education, research, and public service.

0

